• You are currently viewing our forum as a guest, which gives you limited access to view most discussions and access our other features. By joining our free community, you will have access to additional post topics, communicate privately with other members (PM), view blogs, respond to polls, upload content, and access many other special features. Registration is fast, simple and absolutely free, so please join our community today! Just click here to register. You should turn your Ad Blocker off for this site or certain features may not work properly. If you have any problems with the registration process or your account login, please contact us by clicking here.

David Eagleman and Mysteries of the Brain

Vasilisa

Symbolic Herald
Joined
Feb 2, 2010
Messages
3,946
Instinctual Variant
so/sx
The Possibilian
What a brush with death taught David Eagleman about the mysteries of time and the brain.
by Burkhard Bilger
April 25, 2011
The New Yorker

Excerpt:
[....]
If Eagleman’s body bears no marks of his childhood accident, his mind has been deeply imprinted by it. He is a man obsessed by time. As the head of a lab at Baylor, Eagleman has spent the past decade tracing the neural and psychological circuitry of the brain’s biological clocks. He has had the good fortune to arrive in his field at the same time as fMRI scanners, which allow neuroscientists to observe the brain at work, in the act of thinking. But his best results have often come through more inventive means: video games, optical illusions, physical challenges. Eagleman has a talent for testing the untestable, for taking seemingly sophomoric notions and using them to nail down the slippery stuff of consciousness. “There are an infinite number of boring things to do in science,” he told me. “But we live these short life spans. Why not do the thing that’s the coolest thing in the world to do?”

The Eagleman lab, on the ground floor of Baylor’s Ben Taub General Hospital, could be the lair of a precocious but highly distractible teen-ager. The doors are pinned with cartoons, the counters strewn with joysticks and other gizmos. The conference table is flanked by a large red rubber ball, for use as a chair or a Hippity Hop. When Eagleman first moved in, he had the walls painted baby blue, with a shiny finish designed to be erasable. By now, they’ve been covered from floor to ceiling with equations, graphs, time lines, to-do lists, aphorisms, and sketches of brain waves—a Pollocky palimpsest of red, green, purple, and black scribblings. “The old stuff is really hard to erase,” Eagleman told me. “It’s like memory that way.”

Although Eagleman and his students study timing in the brain, their own sense of time tends to be somewhat unreliable. Eagleman wears a Russian wristwatch to work every morning, though it’s been broken for months. “The other day, I was in the lab,” he told me, “and I said to Daisy, who sits in the corner, ‘Hey, what time is it?’ And she said, ‘I don’t know. My watch is broken.’ It turns out that we’re all wearing broken watches.” Scientists are often drawn to things that bedevil them, he said. “I know one lab that studies nicotine receptors and all the scientists are smokers, and another lab that studies impulse control and they’re all overweight.” But Eagleman’s ambivalence goes deeper. Clocks offer at best a convenient fiction, he says. They imply that time ticks steadily, predictably forward, when our experience shows that it often does the opposite: it stretches and compresses, skips a beat and doubles back.

The brain is a remarkably capable chronometer for most purposes. It can track seconds, minutes, days, and weeks, set off alarms in the morning, at bedtime, on birthdays and anniversaries. Timing is so essential to our survival that it may be the most finely tuned of our senses. In lab tests, people can distinguish between sounds as little as five milliseconds apart, and our involuntary timing is even quicker. If you’re hiking through a jungle and a tiger growls in the underbrush, your brain will instantly home in on the sound by comparing when it reached each of your ears, and triangulating between the three points. The difference can be as little as nine-millionths of a second.

Yet “brain time,” as Eagleman calls it, is intrinsically subjective. “Try this exercise,” he suggests in a recent essay. “Put this book down and go look in a mirror. Now move your eyes back and forth, so that you’re looking at your left eye, then at your right eye, then at your left eye again. When your eyes shift from one position to the other, they take time to move and land on the other location. But here’s the kicker: you never see your eyes move.” There’s no evidence of any gaps in your perception—no darkened stretches like bits of blank film—yet much of what you see has been edited out. Your brain has taken a complicated scene of eyes darting back and forth and recut it as a simple one: your eyes stare straight ahead. Where did the missing moments go?

The question raises a fundamental issue of consciousness: how much of what we perceive exists outside of us and how much is a product of our minds? Time is a dimension like any other, fixed and defined down to its tiniest increments: millennia to microseconds, aeons to quartz oscillations. Yet the data rarely matches our reality. The rapid eye movements in the mirror, known as saccades, aren’t the only things that get edited out. The jittery camera shake of everyday vision is similarly smoothed over, and our memories are often radically revised. What else are we missing? When Eagleman was a boy, his favorite joke had a turtle walking into a sheriff’s office. “I’ve just been attacked by three snails!” he shouts. “Tell me what happened,” the sheriff replies. The turtle shakes his head: “I don’t know, it all happened so fast.”

< read the entire article >
 

Octarine

The Eighth Colour
Joined
Oct 14, 2007
Messages
1,351
MBTI Type
Aeon
Enneagram
10w
Instinctual Variant
so
Yet “brain time,” as Eagleman calls it, is intrinsically subjective. “Try this exercise,” he suggests in a recent essay. “Put this book down and go look in a mirror. Now move your eyes back and forth, so that you’re looking at your left eye, then at your right eye, then at your left eye again. When your eyes shift from one position to the other, they take time to move and land on the other location. But here’s the kicker: you never see your eyes move.” There’s no evidence of any gaps in your perception—no darkened stretches like bits of blank film—yet much of what you see has been edited out. Your brain has taken a complicated scene of eyes darting back and forth and recut it as a simple one: your eyes stare straight ahead. Where did the missing moments go?

You do see your eyes move if you twist your head. I believe his observations are an artefact of peripheral vision - you do not have enough cognitive power to notice the movement of your eyes in your peripheral vision. It is not a timeless moment. If you look up and down for example, your eyelids will give it away. Well at least mine did.

Cognitive latencies for sensory processes are interesting (and inevitable, even amongst digital processing), but not the same thing as overall cognition of time.
 

Vasilisa

Symbolic Herald
Joined
Feb 2, 2010
Messages
3,946
Instinctual Variant
so/sx
You do see your eyes move if you twist your head. I believe his observations are an artefact of peripheral vision - you do not have enough cognitive power to notice the movement of your eyes in your peripheral vision. It is not a timeless moment. If you look up and down for example, your eyelids will give it away. Well at least mine did.

Cognitive latencies for sensory processes are interesting (and inevitable, even amongst digital processing), but not the same thing as overall cognition of time.

:rolleyes: The entire article is long, but worth reading.

Time isn’t like the other senses, Eagleman says. Sight, smell, touch, taste, and hearing are relatively easy to isolate in the brain. They have discrete functions that rarely overlap: it’s hard to describe the taste of a sound, the color of a smell, or the scent of a feeling. (Unless, of course, you have synesthesia—another of Eagleman’s obsessions.) But a sense of time is threaded through everything we perceive. It’s there in the length of a song, the persistence of a scent, the flash of a light bulb. “There’s always an impulse toward phrenology in neuroscience—toward saying, ‘Here is the spot where it’s happening,’ ” Eagleman told me. “But the interesting thing about time is that there is no spot. It’s a distributed property. It’s metasensory; it rides on top of all the others.”

The real mystery is how all this is coördinated. When you watch a ballgame or bite into a hot dog, your senses are in perfect synch: they see and hear, touch and taste the same thing at the same moment. Yet they operate at fundamentally different speeds, with different inputs. Sound travels more slowly than light, and aromas and tastes more slowly still. Even if the signals reached your brain at the same time, they would get processed at different rates. The reason that a hundred-metre dash starts with a pistol shot rather than a burst of light, Eagleman pointed out, is that the body reacts much more quickly to sound. Our ears and auditory cortex can process a signal forty milliseconds faster than our eyes and visual cortex—more than making up for the speed of light. It’s another vestige, perhaps, of our days in the jungle, when we’d hear the tiger long before we’d see it.

In Eagleman’s essay “Brain Time,” published in the 2009 collection “What’s Next? Dispatches on the Future of Science,” he borrows a conceit from Italo Calvino’s “Invisible Cities.” The brain, he writes, is like Kublai Khan, the great Mongol emperor of the thirteenth century. It sits enthroned in its skull, “encased in darkness and silence,” at a lofty remove from brute reality. Messengers stream in from every corner of the sensory kingdom, bringing word of distant sights, sounds, and smells. Their reports arrive at different rates, often long out of date, yet the details are all stitched together into a seamless chronology. The difference is that Kublai Khan was piecing together the past. The brain is describing the present—processing reams of disjointed data on the fly, editing everything down to an instantaneous now. How does it manage it?
 

AgentF

Unlimited Dancemoves ®
Joined
Dec 22, 2010
Messages
1,543
MBTI Type
ENFP
Enneagram
7w6
Instinctual Variant
sx/so
meet my ex bf.
 
Top